
Julia
A Fast Dynamic Language for Technical Computing

Created by: Jeff Bezanson, Stefan Karpinski, Viral B. Shah & Alan Edelman

A Fractured Community

Technical work gets done in many different languages

‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ...

Different optimal choices for different tasks

‣ statistics ➞ R
‣ linear algebra ➞ Matlab
‣ string processing ➞ Perl
‣ general programming ➞ Python, Java
‣ performance, control ➞ C, C++, Fortran

Larger projects commonly use a mixture of 2, 3, 4, ...

One Language

We are not trying to replace any of these

‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ...

What we are trying to do:

‣ allow developing complete technical projects in a single language
without sacrificing productivity or performance

This does not mean not using components in other languages!

‣ Julia uses C, C++ and Fortran libraries extensively

“Because We Are Greedy.”

“We want a language that’s open source, with a liberal license.
We want the speed of C

with the dynamism of Ruby.
We want a language that’s homoiconic,

with true macros like Lisp,
but with obvious, familiar mathematical notation like Matlab.

We want something as usable for general programming as Python,
as easy for statistics as R,

as natural for string processing as Perl,
as powerful for linear algebra as Matlab,

as good at gluing programs together as the shell.
Something that is dirt simple to learn,

yet keeps the most serious hackers happy.”

Collapsing Dichotomies

Many of these are just a matter of design and focus

‣ stats vs. linear algebra vs. strings vs. glue vs. metaprogramming

The hardest dichotomy to bridge:

‣ high-level, dynamism, productivity
‣ low-level, efficiency, performance

High-level languages traditionally use a split model

‣ R/Python/Matlab for high-level coding
‣ C/C++/Fortran for low-level coding

Leverage and Control

Fortunately, it’s not the 1990’s anymore

‣ LLVM provides an incredible just-in-time compilation infrastructure

Julia uses LLVM and aggressive JIT to bridge high/low schism

‣ requires deep reconsideration of language design to take advantage

Gives unprecedented control and leverage with ease-of-use

‣ do low-level tricks previously only possible in C or assembly

‣ call C/Fortran libraries trivially and efficiently

Julia in a Nutshell

Dynamically typed

‣ with performance like static languages

Sophisticated parametric type system

‣ but you never have to use it (no performance penalty)

Matlab-like syntax (simplified), easy to learn and use

‣ but homoiconic like Lisp, with real macros, metaprogramming, etc.

Broad-spectrum, highly polymorphic

‣ “a+b” can do a single machine instruction or start up a cluster

Low-Level Code

function qsort!(a,lo,hi)
 i, j = lo, hi
 while i < hi
 pivot = a[(lo+hi)>>>1]
 while i <= j
 while a[i] < pivot; i = i+1; end
 while a[j] > pivot; j = j-1; end
 if i <= j
 a[i], a[j] = a[j], a[i]
 i, j = i+1, j-1
 end
 end
 if lo < j; qsort!(a,lo,j); end
 lo, j = i, hi
 end
 return a
end

Medium-Level Code

function randmatstat(t,n)
 v = zeros(t)
 w = zeros(t)
 for i = 1:t
 a = randn(n,n)
 b = randn(n,n)
 c = randn(n,n)
 d = randn(n,n)
 P = [a b c d]
 Q = [a b; c d]
 v[i] = trace((P'*P)^4)
 w[i] = trace((Q'*Q)^4)
 end
 std(v)/mean(v), std(w)/mean(w)
end

High-Level Code

function copy_to(dst::DArray, src::DArray)
 @sync begin
 for p in dst.pmap
 @spawnat p copy_to(localize(dst), localize(src,dst))
 end
 end
 return dst
end

function copy_to(dest::AbstractArray, src)
 i = 1
 for x in src
 dest[i] = x
 i += 1
 end
 return dest
end

Multiple Dispatch

Some basic rules for addition of “primitives”

+(x::Int64, y::Int64) = boxsi64(add_int(x,y))

+(x::Float64, y::Float64) = boxf64(add_float(x,y))

The promote function (defined in Julia) converts to common type

promote(1,1.5) => (1.0,1.5)

With a few generic rules like this, numeric promotion Just Works™

+(x::Number, y::Number) = +(promote(x,y)...)

Multiple Dispatch

function +{S,T}(A::Array{S}, B::Array{T})
 P = promote_type(S,T)
 S = promote_shape(size(A),size(B)))
 F = Array(P,S)
 for i = 1:numel(A)
 F[i] = A[i] + B[i]
 end
 return F
end

Multiple Dispatch & Metaprogramming

for f in (:+, :-, :.*, :div, :mod, :&, :|, :$)
 @eval begin
 function ($f){S,T}(A::Array{S}, B::Array{T})
 P = promote_type(S,T)
 S = promote_shape(size(A),size(B)))
 F = Array(P,S)
 for i = 1:numel(A)
 F[i] = ($f)(A[i], B[i])
 end
 return F
 end
 end
end

Calling C/Fortran Libraries

Load the library and use “ccall” with the function signature:

getpid() = ccall(:getpid, Uint32, ())

system(cmd) = ccall(:system, Int32, (Ptr{Uint8},), cmd)

libfdm = dlopen("libfdm")
besselj0(x) =
 ccall(dlsym(libfdm,:j0), Float64, (Float64,), x)

function fill!(a::Array{Uint8}, x::Integer)
 ccall(:memset, Void, (Ptr{Uint8},Int32,Int),
 a, x, length(a))
 return a
end

Calling LibRmath

libRmath = dlopen("libRmath")

dt(x, p1, give_log) =
 ccall(dlsym(libRmath,:dt),
 Float64, (Float64,Float64,Int32),
 x, p1, give_log)

pt(x, p1, give_log) =
 ccall(dlsym(libRmath,:pt),
 Float64, (Float64,Float64,Int32),
 x, p1, give_log)

dt(x, p1) = dt(x, p1, false)
pt(x, p1) = pt(x, p1, false)

Calling Python

libpython = dlopen("libpython")

ccall(dlsym(libpython,:Py_Initialize), Void, ())

ccall(dlsym(libpython,:PyRun_SimpleString),
 Int32, (Ptr{Uint8},),
 "print 'Hello from Python.'")

later...
ccall(dlsym(libpython,:Py_Finalize), Void, ())

Some Low-Level Hackery

Find the first float after a given value that “misbehaves”

function find_x_times_inv_x_neq_1(x)
 while x*(1/x) == 1
 x = nextfloat(x)
 end
 return x
end

The “nextfloat” function is defined as

nextfloat(x::Float64) = boxf64(add_int(x,1))

Performance

Project Statistics

Hundreds of popular numerical functions

Getting traction as an open-source project:

‣ 510,000+ page views
‣ 125,000+ visitors
‣ 6,000+ downloads
‣ 1,300+ GitHub followers
‣ 50+ contributors
‣ 4+ Stefans

http://julialang.org/

http://julialang.org
http://julialang.org

